









Eau potable

#### Vanne de régulation de débit



### Fonctionnement

La vanne de régulation de débit Dorot série 300 (« S300-FR ») est activée par la pression dans la conduite. La vanne limite le débit dans le réseau à une valeur prédéfinie quelles que soient les variations de pression en amont. La vanne s'ouvre complètement lorsque le débit descend en dessous du point de consigne.



### Caractéristiques de la S300

#### Performances supérieures

- Stabilité de régulation, quelle que soit la taille de la vanne, jusqu'à un débit proche de zéro sans recours à un artifice de conception (type "V-port") ou à une vanne de dérivation plus petite.
- Conception à opercule "flottant", guidée par un dispositif LTP® unique, à faible friction.

#### Fiabilité élevée

- Tous les orifices de pilotage sont équipés d'inserts inox pour éviter le blocage par la corrosion.
- Membrane renforcée préformée pour un montage plus facile et une meilleure longévité.

Inspection périodique rapide et maintenance facile

- Le système de contrôle est équipée d'un filtre en ligne autonettoyant.
- Réglage et entretien faciles sur site.

#### Polyvalence

La conception standard de la vanne en version chambre simple assure un fonctionnement en douceur. La conversion en chambre double est une option brevetée.

### Matériaux standards

- Corps et chapeau Fonte ductile / En option Fonte d'acier, Acier inoxydable, Cupro-nickel, SuperDuplex
- Composants internes acier inoxydable (1,5"-6), acier revêtu (8"-32") / En option – Fonte d'acier, Acier inoxydable, Nickel Aluminium Bronze, SuperDuplex
- Élastomères EPDM / En option NBR, Néoprène, Viton ou autres
- Revêtement Polyester, Epoxy / En option Halar et
- Dispositif de contrôle Laiton, PA / En option Acier inoxydable 316, Duplex

### Cahier des charges

- La vanne sera de type à piston pilotée hydrauliquement.
- L'encombrement entre brides sera conforme à la norme ISO 5752.
- L'axe sera quidé en haut par un palier de quidage remplaçableet en bas par un système type LTP® en acier
- La vanne assurera sa fonction de régulation sur toute la plage de débit sans nécessiter une vanne de dérivation plus petite ou un dispositif de réduction à profil en V ou similaire.
- Tous les ports de contrôle seront protégés contre la corrosionpar des inserts en acier inoxydable 316.

### Conception

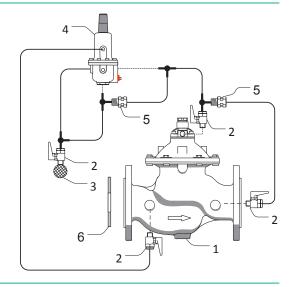
- La vanne doit être adaptée au débit maximal et à la perte de charge autorisée.
- Pour les systèmes à basse pression, envisager un pilote 3





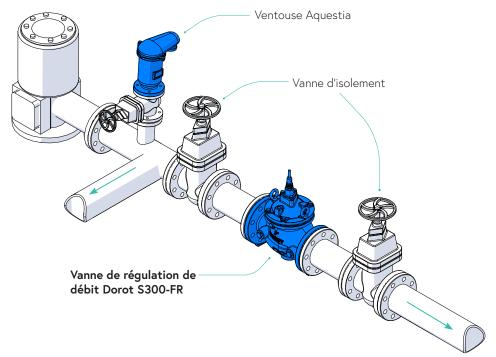
# >

### Dimensionnement rapide


- La vanne doit faire la même taille que la conduite ou un diamètre nominal plus petit.
- Vitesse d'écoulement maximale recommandée pour un fonctionnement continu 5,5 m/s (18 pieds/s).

# Classe de presssion

- Modèle 30, 30A pour moyenne pression (PN16 bar / 250 psi)
- Modèle 31, 31A pour haute pression (PN25 bar / 360 psi)


# Principaux composants du système de contrôle\*

- Vanne Principale
- 2. Robinet à boisseau sphérique
- 3. Filtre auto-nettoyant
- 4. Pilote CXSD
- 5. Restriction
- 6. Diaphragme
- \* Dessin illustratif



#### Installation standard

La vanne limite la consommation en aval à une valeur de consigne.

